Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The blue loop stage of intermediate mass stars has been called a “magnifying glass”, where even seemingly small effects in prior stages of evolution, as well as assumptions about stellar composition, rotation, and convection, produce discernible changes. As such, blue loops, and especially the existence and properties of Cepheids, can serve as a laboratory where feebly connected Beyond Standard Model particles such as axions can be gainfully studied. We undertake a careful study of the effects of these putative particles on the blue loop, paying close attention to the evolution of the core potential and the hydrogen profile. Our simulations, performed withMESA, place bounds on the axion-photon coupling using the galactic Cepheid S Mus, with dynamically-determined mass of 6M⊙, as a benchmark. The effects of varying convective overshoot on the core potential and hydrogen profile, and the ensuing changes in the axion constraints, are carefully studied. Along the way, we explore the “mirror principle” induced by the hydrogen burning shell and contrast our results with those existing in the literature. Less conservative (but more stringent) bounds on the axion-photon coupling are given for a 9M⊙model, which is the heaviest that can be simulated if overshoot is incorporated, and tentative projections are given for a 12M⊙model, which is approximately the heaviest tail of the mass distribution of galactic Cepheids determined by pulsation models using Gaia DR2. Our main message is that the reliable simulation and observation (ideally, through dynamical mass determination) of massive Cepheids constitutes an important frontier in axion searches, challenges in modeling uncertainties in the microphysics of the blue loop stage notwithstanding.more » « lessFree, publicly-accessible full text available April 1, 2026
-
We propose a novel leptogenesis mechanism with a temperature-dependent coupling between the right-handed neutrino and Standard Model particles. This coupling experiences suppression at high temperatures and becomes sizable when the lepton asymmetry washout processes are Boltzmann-suppressed. Such a feature ensures that the washout rates remain consistently below the Hubble expansion rate, preserving all lepton asymmetry generated in the decay of right-handed neutrinos. We illustrate the feasibility of this mechanism with two example models and show that the observed baryon asymmetry of the Universe can be successfully obtained for right-handed neutrino masses larger than as well as for smaller violation of charge-parity symmetry. Published by the American Physical Society2024more » « less
-
A<sc>bstract</sc> In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativisticπ0production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles Image missing<#comment/>.more » « less
-
The abundance of massive primordial black holes has historically been constrained by dynamical probes. Since these objects can participate in hard few-body scattering processes, they can readily transfer energy to stellar systems and, in particular, disrupt wide binaries. However, disruption is not the only possible outcome of such few-body processes. Primordial black holes could also participate in exchange processes, in which one component of a binary system is ejected and replaced by the black hole itself. In this case, the remaining object in the binary would dynamically appear to have an invisible companion. We study the rate of exchange processes for primordial black holes as a component of dark matter and evaluate possible mechanisms for detecting such binaries. We find that many such binaries plausibly exist in the Solar neighborhood and show that this process can account for observed binary systems whose properties run counter to the predictions of isolated binary evolution.more » « lessFree, publicly-accessible full text available February 1, 2026
-
A<sc>bstract</sc> We consider the possibility of indirect detection of dark sector processes by investigating a novel form of interaction between ambient dark matter (DM) and primordial black holes (PBHs). The basic scenario we envisage is that the ambient DM is “dormant”, i.e., it has interactions with the SM, but its potential for an associated SM signal is not realized for various reasons. We argue that the presence of PBHs with active Hawking radiation (independent of any DM considerations) can act as a catalyst in this regard by overcoming the aforementioned bottlenecks. The central point is that PBHs radiate all types of particles, whether in the standard model (SM) or beyond (BSM), which have a mass at or below their Hawking temperature. The emission of such radiation is “democratic” (up to the particle spin), since it is based on a coupling of sorts of gravitational origin. In particular, such shining of (possibly dark sector) particles onto ambient DM can then activate the latter into giving potentially observable SM signals. We illustrate this general mechanism with two specific models. First, we consider asymmetric DM, which is characterized by an absence of ambient anti-DM, and consequently the absence of DM indirect detection signals. In this case, PBHs can “resurrect” such a signal by radiating anti-DM, which then annihilates with ambient DM in order to give SM particles such as photons. In our second example, we consider the PBH emission of dark gauge bosons which can excite ambient DM into a heavier state (which is, again, not ambient otherwise), this heavier state later decays back into DM and photons. Finally, we demonstrate that we can obtain observable signals of these BSM models from asteroid-mass PBHs (Hawking radiating currently with ~$$ \mathcal{O}\left(\textrm{MeV}\right) $$ temperatures) at gamma-ray experiments such as AMEGO-X.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract The exploration of dark sector interactions via gravitational waves (GWs) from binary inspirals has been a subject of recent interest. We study dark forces using extreme mass ratio inspirals (EMRIs), pointing out two issues of interest. Firstly, the innermost stable circular orbit (ISCO) of the EMRI, which sets the characteristic length scale of the system and hence the dark force range to which it exhibits enhanced sensitivity, probes force mediator masses that complement those studied with supermassive black hole (SMBH) or neutron star binaries. The LISA mission (the proposedμAres detector) will probe mediators with massesmV∼ 10-16 eV (mV∼ 10-18 eV), corresponding to ISCOs of 106M⊙(108M⊙) central SMBHs. Secondly, while the sensitivity to dark couplings is typically limited by the uncertainty in the binary component masses, independent mass measurements of the central SMBH through reverberation mapping campaigns or the motion of dynamical tracers enable one to break this degeneracy. Our results therefore highlight the necessity for coordinated studies, loosely referred to as “multimessenger”, between futureμHz- mHz GW observatories and ongoing and forthcoming SMBH mass measurement campaigns, including OzDES-RM, SDSS-RM, and SDSS-V Black Hole Mapper.more » « less
-
Abstract Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3(MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3without Nd2+dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 fspins of the Nd2+in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+doping concentration that enhances the coupling between the exciton and Nd2+4 fspins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3.more » « less
An official website of the United States government
